skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hashemi, Navid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps. 
    more » « less
  2. Conformance is defined as a measure of distance between the behaviors of two dynamical systems. The notion of conformance can accelerate system design when models of varying fidelities are available on which analysis and control design can be done more efficiently. Ultimately, conformance can capture distance between design models and their real implementations and thus aid in robust system design. In this paper, we are interested in the conformance of stochastic dynamical systems. We argue that probabilistic reasoning over the distribution of distances between model trajectories is a good measure for stochastic conformance. Additionally, we propose the non-conformance risk to reason about the risk of stochastic systems not being conformant. We show that both notions have the desirable transference property, meaning that conformant systems satisfy similar system specifications, i.e., if the first model satisfies a desirable specification, the second model will satisfy (nearly) the same specification. Lastly, we propose how stochastic conformance and the non-conformance risk can be estimated from data using statistical tools such as conformal prediction. We present empirical evaluations of our method on an F-16 aircraft, an autonomous vehicle, a spacecraft, and Dubin’s vehicle. 
    more » « less